

DPP - 5 (Unit \& Dimension)

Video Solution on Website:-
 https://physicsaholics.com/home/courseDetails/49

Video Solution on YouTube:-

https://youtu.be/RDRvqRRE2y0

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/69

Q 1. The initial and final temperatures of water as recorded by an observer are $(40.6 \pm 0.2)^{\circ} \mathrm{C}$ and $(78.3 \pm 0.3)^{\circ} \mathrm{C}$. Calculate the rise in temperature.
(a) $(37.7 \pm 0.5)^{\circ} \mathrm{C}$
(b) $(37.7 \pm 0.1)^{\circ} \mathrm{C}$
(c) $37^{\circ} \mathrm{C}$
(d) $(37.7 \pm 0.6)^{\circ} \mathrm{C}$

Q 2. If the length of $\operatorname{rod} A$ is $3.25 \pm 0.01 \mathrm{~cm}$ and that of B is $4.19 \pm 0.01 \mathrm{~cm}$ then the $\operatorname{rod} B$ is longer than rod A by:
(a) $0.94 \pm 0.00 \mathrm{~cm}$
(b) $0.94 \pm 0.01 \mathrm{~cm}$
(c) $0.94 \pm 0.02 \mathrm{~cm}$
(d) $0.94 \pm 0.005 \mathrm{~cm}$

Q 3. Acceleration due to gravity is given by $g=\frac{G M}{R^{2}}$ what is the equation of the fractional error $\frac{\Delta g}{g}$ in measurement of gravity $g[G \& M$ constant $]$:
(a) $-\frac{\Delta R}{R}$
(b) $2 \frac{\Delta R}{R}$
(c) $\left(\frac{\Delta R}{R}\right)^{2}$
(d) $\frac{1}{2} \frac{\Delta R}{R}$

Q 4. If errorin measuring diameter of a circle is 4%, the error in the radius of the circle would be:
(a) 2%
(b) 8%
(c) 4%
(d) 1%

Q 5. A physical quantity is given by $X=M^{a} L^{b} T^{c}$. The percentage error in measurement of M, L and T are α, β and γ respectively. Then maximum percentage error in the quantity X is
(a) $a \alpha+b \beta+c \gamma$
(b) $a \alpha+b \beta-c \gamma$
(c) $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}$
(d) None of these

Q 6. The resistance $\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$ where $\mathrm{V}=100 \pm 5$ volts and $\mathrm{I}=10 \pm 0.2$ amperes. What is the total error in R ?
(a) 5%
(b) 7%
(c) 5.2%
(d) $\frac{5}{2} \%$

Q 7. According to Joule's law of heating, heat produced $H=I^{2} R t$, where I is current, R is resistance and t is time. If the errors in the measurements of I, R and t are $3 \%, 4 \%$ and 6% respectively then error in the measurement of H is
(a) $\pm 17 \%$
(b) $\pm 16 \%$
(c) $\pm 19 \%$
(d) $\pm 25 \%$

Q 8. Error in the measurement of radius of a sphere is 1%. The error in the calculated value of its volume is
(a) 1%
(b) 3%
(c) 5%
(d) 7%

Q 9. A body travels uniformly a distance $(13.8 \pm 0.2) \mathrm{m}$ in a time (4.0 ± 0.3) s. Calculate its velocity with error limits. What is the percentage error in velocity?
(a) 6.6%
(b) 2.6%
(c) 8.9%
(d) 4.8%

Q 10. A physical quantity A is related to $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d as follows $A=\frac{a^{2} b^{3}}{c \sqrt{d}}$, the percentage errors of measurement in $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are $1 \%, 3 \%, 2 \%$ and 2% respectively. What is the percentage error in the quantity A
(a) 12%
(b) 7%
(c) 5%
(d) 14%

Q 11. The length, breadth and thickness of a strip are $(10.0 \pm 0.1) \mathrm{cm},(1.00 \pm 0.01) \mathrm{cm}$ and $(0.100 \pm 0.001) \mathrm{cm}$ respectively. The error in its volume will be
(a) $\pm 0.03 \mathrm{~cm}^{3}$
(b) $\pm 0.111 \mathrm{~cm}^{3}$
(c) $\pm 0.012 \mathrm{~cm}^{3}$
(d) none of these

Q 12. The period of oscillation of a simple pendulum in the experiment is recorded as 2.63 s , $2.56 \mathrm{~s}, 2.42 \mathrm{~s}, 2.71 \mathrm{~s}$ and 2.80 s respectively. The average absolute error is
(a) 0.1 s
(b) 0.11 s
(c) 0.01 s
(d) 1.0 s

Q 13. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. How much will be the maximum error in the estimate of kinetic energy obtained by measuring mass and speed ?
(a) 11%
(b) 8%
(c) 5%
(d) 1%

Q 14. A cylindrical wire has a mass $0.3 \pm 0.003 \mathrm{~g}$, radius $0.5 \pm 0.005 \mathrm{~mm}$ and length $6 \pm$ 0.06 cm . The maximum percentage error in the measurement of its density is:
(a) 1%
(b) 2%
(c) 3%
(d) 4%

Q 15. For resistances R_{1} and R_{2}, connected in parallel, Find the relative error in their equivalent resistance, if $R_{1}=(50 \pm 2) \mathrm{ohm}$ and $R_{2}=(100 \pm 3) \mathrm{ohm}$?
(a) 0.0366
(b) 0.0633
(c) 0.6363
(d) 0.0363

Q 16. Given the numbers : $161 \mathrm{~cm}, 0.161 \mathrm{~cm}, 0.0161 \mathrm{~cm}$. The number of significant figures for the three numbers are
(a) 3, 4 and 5 respectively
(b) 3, 3 and 3 respectively
(c) 3,3 and 4 respectively
(d) 3,4 and 4 respectively

Q 17. The number of significant figures in 0.00210 is
(a) 2
(b) 3
(c) 4
(d) 5

Q 18. If $\mathrm{L}=2.331 \mathrm{~cm}, \mathrm{~B}=2.1 \mathrm{~cm}$, then $\mathrm{L}+\mathrm{B}=$
(a) 4.431 cm
(b) 4.43 cm
(c) 4.4 cm
(d) 4.2 cm

Q 19. 81.4 g sample of ethyl alcohol contains 0.002 g of water. The amount of pure ethyl alcohol to the proper number of significant figures is
(a) 81.398 g
(b) 71.40 g
(c) 81.4 g
(d) 81 g

Q 20 . In the final answer of the expression $\frac{(29.2-20.2)\left(1.79 \times 10^{5}\right)}{1.37}$. The number of significant figures is
(a) 1
(b) 2
(c) 3
(d) 4

Answer Key

$\text { Q. } 1 \text { a }$	$\text { Q. } 2 \mathrm{c}$	$\text { Q. } 3 \mathrm{~b}$	Q. 4 c	Q. 5 a
Q. 6 b	$\text { Q. } 7 \mathrm{~b}$	Q. 8 b	Q. 9 c	Q. 10 d
Q. 11 a	Q. 12 b	Q. 13 b	Q. 14 d	Q. 15 a
Q. 16 b	Q. 17 b	Q. 18 c	Q. 19 c	Q. 20 b

